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Introduction
The project1 discussed here, supervised and guided by Dr.
Harrison, had the end-goal of training a model from a novel,
in particular Harry Potter and the Sorcerer’s Stone, using
a sequence to sequence network. This model would then
be able to predict, or “generate” an output sentence given
an input sentence, and therefore be able to generate stories.
Several topics within machine learning and natural language
processing were explored with this project, including recur-
rent neural networks, sequence to sequence networks, and
word embeddings. A large portion of the project was ded-
icated to the study of various word embeddings and their
performance and effectiveness when training a model on the
corpus using a sequence to sequence network. The final re-
sult shows that out of all embeddings trained and tested, a
pre-trained GloVe embedding, provided by the authors of its
paper, gave the best model, but still with room for much im-
provement. This project ended up being the largest Python
project I’ve worked with, increasing my knowledge in many
related areas, both within machine learning as well as more
general programming concepts.

Background
Of the various strategies used in this project, the most impor-
tant for the project is the recurrent neural network (RNN).
An RNN is a feed-forward neural network that allows infor-
mation to persist due to loops within them. For some neural
network with input xi and output yi, its last hidden state,
hi+1, will also be outputted and used as an input, along
with xi+1, in the next step’s input for the neural network.
If thought of unraveled, an RNN will be given a sequence
of input (x1, . . . , xt), and compute the sequence of output
(y1, . . . , yt). Each value in the input sequence will be given
to a separate copy of the neural network, with each net-
work connected as a chain by their last hidden states. (Olah
2015) This hidden state connection allows information to
pass between steps in the neural network, and therefore per-
sist across the entire input, allowing RNNs to map sequences
to sequences if the size of input and output is known ahead
of time. This sequence to sequence mapping is why RNNs
have had success with various problems, such as language
translation. (Sutskever, Vinyals, and Le 2014)

1github.com/zembrodt/story-generation

Sequence to sequence networks take the concept of RNNs
a step further: having two RNNs work together to map an
input sequence to a target sequence, with one taking the
input sequence, the other computing the target sequence.
(Sutskever, Vinyals, and Le 2014) These two RNNs are
known as the encoder and decoder. The encoder RNN maps
the input sequence into a single vector of a fixed size, there-
fore encoding the “meaning” or “concept” of the input. The
decoder will then take the encoder output, and compute a
target sequence. This concept removes the restriction that
the output sequence size is known for every input sequence.
A simple decoder uses only the context vector, or last out-
put of the encoder, as its initial hidden state. An attention
decoder, however, allows the decoder RNN to “focus” on a
different part of the encoder’s outputs for every step of the
decoder’s own outputs. A set of attention weights are calcu-
lated and multiplied by the encoder output vectors to create
a weighted combination. The result contains information
about specific parts of the input sequence, and will help the
decoder compute the correct output. These weights are cal-
culated with another feed-forward layer, using the decoder’s
input and hidden state as its input. (Robertson 2017)

Input for sequence to sequence networks is always in the
form of vectors, but they are applied in many natural lan-
guage problems. For the networks to solve these problems,
vector representations of words must be developed. One
such way to do this is creating one-hot vectors for words,
with every index in the vector representing a different word
from the vocab. This approach, however, is not ideal, as it
leads to very large and sparse vectors, and will likely not
provide a semantic relation from one word to another. Word
embeddings provide such relations between words in a vo-
cab, creating a vector space representation of the words.
(Tensorflow 2018) There exist various methods to create
such word embeddings, such as GloVe, that are supervised
methods that count statistics within the given corpus, such
as word occurrences, word-word co-occurrences, and oth-
ers. With this information, the model can map the statis-
tics down to smaller and denser vectors than the previously
mentioned one-hot vectors. The resulting vector space also
captures the semantic meaning of words within the corpus
the model was trained on, where semantically similar words
are mapped to vectors near each other. (Pennington, Socher,
and Manning 2014)



Lastly, the perplexity of a probability model is a metric
used to evaluate trained models. In a sense, it is used to de-
termine how “perplexed” a model is with target output after
given its associated input. A lower perplexity will indicate
that the model performs well at predicting the target output.
It is calculated with the equation

perplexity = b−
1
N

∑N

i=1
logbp(xi)

Where p is a proposed probability model, and (x1, . . . , xN )
is the test sample.

Experiments
The goal of this project was to develop a sequence to se-
quence network to train on the corpus of a novel, a small
corpus in comparison to other natural language datasets, and
attempt to predict sentences given an input sentence as its in-
put. This model was implemented using PyTorch, and modi-
fied from an existing2 implementation of translating English
sentences to French. Beyond the network, various word em-
beddings were implemented, both pre-trained and custom
ones trained on the corpus used in this project. The use of
various embeddings were important for two reasons: to re-
duce the loss value of the training model, as well as getting
a head start on the accuracy of the initial vector space for
word representation.

To train the model, a corpus of the first Harry Potter novel
was used: Harry Potter and the Sorcerer’s Stone. (Rowling
1998) The novel was parsed into a list of sentences, where
the order of the sentences in the list is the order they appear
within the novel. A sentence was determined as a series of
words, potentially over multiple lines in the novel, and were
split with various methods. Firstly, they are split on a sen-
tence terminator: a period, exclamation point, or question
mark. Sentences were also potentially split on ellipses, or
multiple periods, in a naı̈ve method of if the word follow-
ing the ellipsis began with a capital letter. Lastly, dialogue,
or a word or series of words surrounded by single or dou-
ble quotes, were also split into their own sentences. Along
with this sentence splitting, all text was lowercased and all
punctuation was removed, except select punctuation such as
exclamation points and question marks, kept for their poten-
tial semantic usefulness within the sentence. Contractions
were also tokenized out, such as “would’ve” to “would ‘ve”
or “Harry’s” to “Harry ‘s”. In this case single quotes were
kept for their use with pre-trained word embeddings. Var-
ious other parsing methods were implemented that specifi-
cally relate to the given text, such as removal of chapter ti-
tles, “stuttering” dialogue, and others, in an attempt to create
a smaller vocab and more accurate sentence representation
of the novel. The accuracy of these parsing methods was
never calculated, but the amount of sentences that may be
incorrect or contain unwanted text, such as chapter titles or
page numbers, is negligible with respect to the rest of the
data that is correct. These inconsistencies should not have
had much of an effect on the models trained with this data.
With this list of parsed sentences, training and testing data

2pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

was created by creating pairs of all the sentences, where each
pair is a sentence with the sentence that follows it. For exam-
ple, a group of sentences (s0, s1, . . . , sk−1, sk) would create
the pairs ((s0, s1), (s1, s2), . . . , (sk−2, sk−1), (sk−1, sk)).
These pairs allows the sequence to sequence network to train
on an input sentence with the known target sentence. The
pairs were shuffled randomly and split into 80% training
data, and 20% testing data, with the train/test data split saved
so variously trained models all trained on the same data for
consistency. There was a total of 5,672 training pairs, and
1,148 testing pairs. Finally, a special “end-of-sentence” to-
ken was appended to each sentence to denote the end of a
sentence, needed in the evaluation step.

Sequence to sequence network
The sequence to sequence network was created by creating
an encoder RNN and an attention decoder RNN. Both RNNs
are multi-layer gated recurrent units (GRU), implemented
by PyTorch. GRU was chosen, as opposed to another RNN
type, such as long short-term memory (LSTM), for its in-
creased performance when training on smaller datasets.

Training
To train the model, an input sentence is given to the encoder,
with every output and last hidden state stored. The decoder
is then given a special “start-of-sentence” token as its first
input and the previously stored last hidden state of the en-
coder as its first hidden state, with subsequent encoder out-
puts given to the decoder as inputs. Occasionally, for about
half the data trained, teacher forcing is used. In this case,
the real target output is used as input rather than the previ-
ous output of the decoder. The loss value for each decoder
output is calculated as the negative log likelihood loss be-
tween the decoder output, and the target output within the
target sequence. The model is trained for a specified amount
of epochs, or a complete iteration through the training data,
while calculating the loss value at each epoch. The core of
this code was modified from the previously mentioned Py-
Torch project, converted to train for epochs rather than iter-
ations, calculating loss per epoch, and displaying validation
results. Validation values were calculated by creating a val-
idation set, made up of 10% of the training pairs selected
at random, and calculating the loss for each validation pair
with the model at its current epoch after freezing learning.

Evaluation
Once trained, the model is then evaluated. This step is simi-
lar to the above training step, but without target outputs. The
decoder’s output is fed back to itself for each step, creating
an output sentence until it predicts the “end-of-sentence”
token (or reaches the max length). Rather than take the top-
predicted word for each step, the decoder in this method
does a beam search for the top-k results. Here, the decoder
finds the k output sentences with the best score from the
given input sentence, returning the best non-empty sentences
of the k sentences. To evaluate these output sentences, two
approaches are used: perplexity and translation metrics.

The perplexity of the model is calculated for each test
input by giving the model the input, and then forcing it to



output the corresponding test output, and measuring its per-
plexity score of this sentence, rather than a sentence it was
to predict.

The translation metrics are calculated by scoring the out-
put predicted sentence against the real target sentence with
metrics such as BLEU (Papineni et al. 2002) or METEOR
(Lavie and Agarwal 2007).

Word embeddings

The model learns word embeddings naturally while it trains,
but their initial values may help or affect how the model
trains or how long the training takes. Three types of word
embeddings were used within the project for various exper-
iments. First, is a default random embedding, where the
vector for each word is random. Next, a pre-trained GloVe
300-dimension embedding, trained on a 2014 Wikipedia
dump and Gigaword 5, was used. The corpus for this em-
bedding contained 6 billion total tokens, and a vocab of
400,000 words. Lastly, two custom embeddings were cre-
ated from the entire Harry Potter corpus (all 7 novels) using
word2vec (Mikolov et al. 2013), one with continuous bag
of words, the other with stop-gram. Both embeddings were
300-dimensions and trained with a window size of 5 tokens.
The theory of the two non-random embedding types was to
provide a head start with the accuracy of the vector space for
word representation. The custom embeddings, in compari-
son to the GloVe embedding, was developed to hopefully
have the words’ semantic relations be based off how they
are used in Harry Potter, which may differ to their use in
other texts, as well as include Harry Potter-specific words
in the vector space. The main issue with these custom em-
beddings, however, is the size of both the corpus and the
vocab. In comparison to the GloVe embedding’s token count
and vocab size, the Harry Potter corpus that was created has
only 2,253,370 tokens. Of those tokens, only 1,220,874 re-
mained after stopwords were filtered, which was the corpus
that was used. Along with the token count, its vocab size
had only 11,834 words. This lack of data, either token count
or vocab size, most likely hindered this type of embedding.

Implementation

The project was implemented in Python, using various 3rd
party modules, such as PyTorch for the sequence to sequence
network and NLTK (Loper and Bird 2002) for natural lan-
guage parsing and evaluation. As discussed before, the im-
plementation of the encoder and decoder RNNs was modi-
fied from a similar PyTorch project. Perplexity was calcu-
lated using values given by the decoder, with the formula

of 2−
1
N

∑N

i=1
log2p, where p is the probability of each word

given the previous word. The portion of the formula, log2p,
was already calculated by PyTorch. The BLEU score was
provided by a package within NLTK, while METEOR was
a custom implementation3 based on the algorithm described
in its research paper. (Lavie and Agarwal 2007)

3github.com/zembrodt/pymeteor

Drawbacks
The project has several current drawbacks, which will be
discussed more in-depth below. These drawbacks include
incorrectly loading checkpoints, a minimum loss value of
around 3, potentially due to training on a small corpus, and
high perplexity values when given testing data.

Future work
Beyond correcting the drawbacks listed above, future work
could include training and testing a working model on cor-
pora of different types, such as news articles, song lyrics, etc.
Training more custom embeddings could also prove benefi-
cial, either training them for much longer than the experi-
ments done for this project, or using GloVe to train custom
word embeddings rather than word2vec.

Experiments
The experiments conducted for the above described model
can be broken down into several sections as various con-
cepts were implemented or tested: default implementation,
beam search, and custom embeddings. Since these were im-
plemented in various stages of the project, the code used to
parse the natural language in the novel may not be consistent
through all experiments, but the results from each experi-
ment should not be greatly affected by this. Along with this,
several evaluation metrics were not correctly implemented
until later stages in the project, such as calculating perplex-
ity or tracking loss values while training.

Default Implementation
The default implementation is close to the initial code used
from the PyTorch sequence to sequence network. Beam
search had not yet been implemented, only evaluating with
the top-1 result, and random embeddings were used. Unfor-
tunately, at this point in time, perplexity was not being cal-
culated correctly, and would not be fixed until beam search
was implemented. At this point, however, we have results
from the translation studies.

Epochs BLEU score METEOR score
10 0.0 0.0157
40 0.0 0.0389

Table 1: Default implementation BLEU and METEOR
scores

The initial results in Table 1 had poor analysis scores, both
at 0 or near 0. For both BLEU and METEOR, scores range
from 0 to 1, with 1 meaning an exact match. However, the
sentences they predicted were promising at the time.

Beam search
At this point, the evaluation of the trained model was up-
dated to include beam searching of the top-k results, rather
than the default top-1. The implementation of this was to
check if the best scoring output sentence was perhaps not
found by taking the top-1 output at each stage of the decoder,



but somewhere else. This model was once again trained for
40 epochs.

Epochs BLEU score METEOR score
40 0.0 0.0346

Table 2: Beam search BLEU and METEOR scores

This model showed no real improvement with the transla-
tion metric scores, as shown in Table 2, but the first perplex-
ity study was also done during this stage.

Epochs Actual sentences Random words
25 85241.0183 306539.759

Table 3: Perplexity scores for “Actual sentences” and “Ran-
dom words”

While the perplexity scores in Table 3 were not very
good, particularly due to the small amount of epochs the
model was trained for, the “actual sentences” score being
fairly smaller than the “random words” score was promis-
ing. Here, “actual sentences” refers to the score of given
an input sentence, the perplexity of the model forcing it to
evaluate to the real target sentence. “Random words”, on
the other hand, were given an input sentence, the perplexity
of the model forcing it to evaluate a random target sentence
of the same length as the real target sentence, but where
each word was replaced by a random word selected from
the corpus. In future methods, explained below, this per-
plexity study will be split between training data and testing
data, with other metrics used as well.

Custom Word Embeddings
The bulk of experiments were conducted with custom word
embeddings. At this point in the project, models started to
be trained for a larger amount of epochs, ranging from 100
to 500, and the under-fitting of the model to the data be-
came apparent. The value of loss while training was also
calculated and recorded for comparison and analysis of each
model. It was also determined that translation metrics such
as BLEU and METEOR may not be ideal to measure the
effectiveness of the model, at least in its current state, and
were no longer calculated.

Figure 1 shows an initial training of the model using the
GloVe word embedding discussed previously, trained to 100
epochs. While its final loss value of around 6.72 is not
an ideal value, this model seemed to still be learning, and
the loss decreasing, when it finished training at 100 epochs.
Nevertheless, it was decided to train two custom word em-
beddings with word2vec using the entire Harry Potter cor-
pus, as discussed previously. Figures 2 and 3 show re-
sults for both stop-gram (SG) and continuous bag of words
(CBOW) implementations.

At this point, the SG implementation seemed the most
promising, having finished training for 100 epochs with a
loss value of 4.807. It was decided then to do a full study on
all word embedding implementations for a full comparison
between them, and for a larger amount of epochs.

Figure 1: Initial training with GloVe

Figure 2: Initial training with word2vec SG

Figure 4 shows a comparison between random (called
none), GloVe, word2vec with SG, and word2vec with
CBOW embeddings. The result shows that out of all the
models tested, only GloVe had any improvement, with a de-
creasing loss value after 500 epochs. However, it became
apparent that the project developed was incorrectly saving
and loading models, causing a large spike in the loss value
when a checkpoint was loaded (see emphasis of GloVe value
in Figure 4).

After conducting this comparison, however, it was de-
termined that the custom word2vec embeddings should be
trained on the Harry Potter corpus for longer. At this point,
both were trained for 15 epochs over the corpus, taking a
little over one minute. CBOW also seemed to be the better
implementation to move forward with, rather than SG.

Figure 5 shows a comparison of two models trained for
500 epochs. One with the 15-epoch CBOW embedding, the
other with a 300-epoch CBOW embedding. This result was
once again corrupted by the loss spiking of loading a check-



Figure 3: Initial training with word2vec CBOW

Figure 4: Comparing all embeddings

point (emphasized) for the 300-epoch CBOW embedding.
However, before the checkpoint, the 300-epoch CBOW em-
bedding was performing better, so it could be argued that
training the word embedding for a larger amount of epochs
positively affected the model’s loss value while training.

Now it was determined to do a comparison of the cus-
tom CBOW embedding with the GloVe embedding, for 500
epochs, without any checkpoint loading, as this issue still
hadn’t been corrected.

Figures 6 and 7 compare these two embeddings with one
another. Training with the CBOW embedding was not ben-
eficial for the model’s training process, and overall was not
decreasing the loss value. GloVe, however, performed well.
Without having to checkpoint, the loss value never spiked
(after the initial spike), reached a minimum value of 2.983,
and a final value of 3.083 at the 500th epoch. This was a
much better epoch score than the 4.0 to 7.0 and greater val-
ues calculated earlier. Perplexity studies were once again
conducted on this model, giving even more interesting re-
sults.

In Table 4, a further perplexity study was developed, for
“random sentences”. For this study, the model was given
the input sentence, and forced to evaluate a target sentence

Figure 5: Comparing different word2vec CBOW embed-
dings

Figure 6: Initial training with GloVe

of the same length as the real target sentence, but randomly
chosen from the data. The study was also split between
training and testing data, where training data should out-
perform testing data, as it is data the model has seen, but
with the goal of the testing data scoring close to the train-
ing data scores. Out of the three categories of studies, “ac-
tual sentences” should perform the best, as they are the real
sentences to follow the input sentences. This will be fol-
lowed by “random sentences”, as they are full real sen-
tences, meaning they have a real sentence structure, but may
have nothing to do with the input. Finally, “random words”
should perform the worse, as they will likely not have a
real sentence structure. Table 4 shows that this is the case:
training data usually outperforms testing data, “actual sen-
tences” outperforms “random sentences”, which then out-
performed “random words”. The 250th epoch model is
taken from the minimum point in Figure 7, with an “ac-
tual sentences” value of 42.989, this perplexity value was
actually reduced to 37.041 for the 500th epoch of the same
model. In fact, all training data perplexity values between
the two models was decreased. However, the testing per-
plexity values all increased. For the extra 250 epochs the



Figure 7: Initial training with GloVe

Epochs Training data Testing data

250
Actual sentences 42.9893 736176.1818
Random words 146455354.9 147674868.5
Random sentences 295889.4025 299692.5997

500
Actual sentences 37.0408 4872462.827
Random words 1270328937 6201033178
Random sentences 27962670.27 2313469.597

Table 4: Perplexity scores for model in Figure 7

model trained for, it seemed to continue learning, but fit-
ted too exactly to the training data, and became more “per-
plexed” by data it had not seen before. Finally, the actual
perplexity themselves were extremely high for the testing
data, further showing that perhaps the model hasn’t learned
enough to handle unseen data. One cause of this could be
due to the lack for training data, with just over 5,000 sen-
tence pairs.

Conclusion
The project discussed had the end-goal of generating sto-
ries by training a sequence to sequence network on the first
Harry Potter novel as its corpus. A large portion of the
project, however, became a study of various word embed-
dings, and how they affect the training of the model. Both
topics were something I was unfamiliar with at the start
of the project, as well as the various tools used, such as
PyTorch, word2vec, NLTK, and others. This was also the
largest Python project I’ve undertaken, with roughly 2,800
lines of code, including comments and print statements. Due
to this, I believe this project has also tremendously helped
my skills in various related areas: Python programming,
working with Git, writing in markdown, and reading and un-
derstanding documentation. While the end result and current
status of the project isn’t necessarily complete or a work-
ing story generator, I believe it to be a good start, and has
immensely increased my knowledge on its related topics of
RNNs, sequence to sequence networks, word embeddings,
and how to leverage these tools in a language such as Python.

I hope in the future to be able to further explore this project,
or work in similar areas to take advantage of what I have
learned.
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