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Introduction

Story generation is an ongoing field of great importance in the future. Machines
and AIs immersed in our society will be expected to behave certain ways by
humans. They will need to naturally interact with humans in accordance to
social conventions, and will require a commonsense and socio-cultural knowledge
that humans will expect them to understand. Another reason is that humans
regularly use stories in their everyday life to describe events, give context to an
issue, or for entertainment. This allows us to convey and transfer complex ideas
to one another. As machines are further integrated, they will need to be able
to understand these stories to correctly understand humans, and generate these
stories to interact with humans. Understanding and telling these stories will
further help computers communicate with humans. One area currently used for
these problems is that of machine learning, and more specifically, deep learning.

Recurrent neural networks (RNN) have been used recently in various appli-
cations for natural language processing and generation. They have been used
for language translation [25], query predicting [24], dialogue generation [23], and
many other areas. The project discussed here, supervised and guided by Dr.
Harrison, had the end-goal of applying these RNNs, using two different exist-
ing approaches, for story generation. The approaches used in this project are
a sequence-to-sequence network1 and a hierarchical recurrent encoder-decoder
(HRED)2. By training these models on an existing naturally occurring story
text, in particular Harry Potter and the Sorcerer’s Stone [22], they are able to
predict, or “generate” a sentence given previous sentences as input. This gen-
eration of sentences can then be strung together to result in an automatically
generated story.

1github.com/zembrodt/story-generation
2github.com/zembrodt/hred-story-generation
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Several topics within machine learning and natural language processing were
explored in this project, including recurrent neural networks, sequence-to-sequence
networks, hierarchical networks, and word embeddings. A sequence-to-sequence
network was chosen to allow deep learning without predetermined input and
output sizes. The HRED model was implemented to compare with a sequence-
to-sequence model and measure the benefit of providing the model with more
context to a prediction than the previous sentence. The addition of this context
provided better results and much lower perplexity scores, even with a smaller
amount of data points. Finally, a large portion of the project was dedicated
to the study of various word embeddings and their performance and effective-
ness when training a model on the corpus using these two models. Various
word embeddings were used, including a pre-trained GloVe embedding from a
Wikipedia dataset, and two custom word2vec embeddings from a Harry Potter
dataset. The final result of both models showed that out of all embeddings
tested, the GloVe embedding provided the best models.

Related Work

Story generation can be split into two types: closed-world and open-world.
While the project discussed in this paper is an implementation of open-world
story generation, it is important to understand both types along with their
benefits and limitations.

Closed-world Story Generation

A closed-world model is one that has constraints on the story given by the
author, whether on the story’s plot or its space. Their quality relies on the
effectiveness of knowledge engineering by the author and the domain model.
This domain model dictates what types of stories are possible, and includes
predefined rules, entities, and outcomes of the world.

Considered one of the first story generation systems, TALE-SPIN simulates
the events of characters, who each have their own unique personalities and
goals. The system simulates events that attempt to allow each character to
achieve their goal. By doing this, the system is able to create basic stories.
The space is mainly authored, but is allowed to be modified by the system so
characters’ goals may be reached. The main achievement of this system is that
it shows how important the quality of a story’s space is. A poor quality space
will lead to dull or nonsensical stories [14].

Another early system is UNIVERSE, aimed at generating melodramatic
plots. Characters in the space are provided rankings for different elements and
a set of goals. These traits act as constraints for each character with respect to
different events. The system’s goal was to be able to run indefinitely, continu-
ously creating new plot twists. To achieve this, the overall plot was provided
a goal, with different plot fragments provided. These fragments each had their
own goals, and are continuously mixed and combined to generate new plots [8].
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Mateas and Stern developed a system, Façade, to develop an interactive
narrative. In this system, constraints are applied to the plot to ensure certain
situations occur. The space is also completely authored to provide depth and
personality to the characters. Façade uses a procedural authorship technique
to generate its narrative when users interact with the system [13].

Tomaszewski and Binsted describe an implementation of an interactive drama
system with Demeter. In this system, the space consists of fixed locations, props,
characters, etc. The user dictates actions of their character from a fixed set while
the system’s manager responds with actions by the story’s other characters. The
user interacts with objects in the world by selecting an available verb, which is
then translated into one or more actions that give the verb context within the
current story. The system’s manager uses this to select the next scene to play
based on a set of rules [26].

In another algorithm, Fabulist, by Riedl et al. rules needed to be provided
about the world along with the goal of the story. These rules defined different
actions that could be taken along with their parameters, constraints, precondi-
tions, and effects. In this algorithm and similar ones, it is difficult to separate
the creativity of a story between the algorithm and the author [21].

Closed-world story generators require authored domains for their use, and
are unable to generate stories outside of this domain. Planning for stories is
also a difficult problem to solve due to being PSPACE-complete. However, due
to the authorship of these systems, the stories they are able to generate will be
coherent and detailed, and each event generated will be motivated intentionally.

Open-world Story Generation

An open-world model is one that is able to generate a novel story about any
number of topics, just like humans.

Li and Riedl attempted to generalize the story generation concept to open-
world by creating an interactive generator in Scheherazade using plot graph
learning. This method of learning requires the input to be pre-processed into
events of the story’s plot. Scheherazade does not rely on any rules of the ficti-
tious world and uses crowdsourcing to automatically learn the domain knowl-
edge. With this knowledge the system is able to construct and understand
stories about everyday activity. However, without specific rules for the story to
follow, the stories are simpler and shorter than those possible by closed-world
models. The use of plot events also limits the type of stories that can be told.
This lack of complexity is a trade-off for the system’s scalability [9].

Recently, recurrent neural networks have been used to handle the large and
growing story corpora. These neural networks also allow a more general ap-
proach to their input, requiring less pre-processing than other methods, such as
plot graph learning. The difficulty in this is the randomness due to the com-
plexity of learning patterns from the corpora. Pichotta and Mooney describe
several systems for predicting both events of a text and the raw sentences of a
text. Their technique uses Long Short-Term Memory recurrent neural nets for
their models to encode and decode sequences. They compared three systems for
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these techniques. First, a system that was trained to encode a sentence’s tokens
and decode the successor sentence’s tokens. Next, a system trained to encode a
sentence’s events and decode the successor sentence’s events. Lastly, a system
trained to encode a sentence’s events, decode the successor sentence’s events,
encode these events, and then decode the successor sentence’s tokens. These
systems are similar to the sequence-to-sequence network implemented within
this project, however these implementations just use a single recurrent neural
net for both encoding and decoding [20].

Martin et al. developed a system using deep neural networks to generate
the events of a story, rather than specific sentences, then generate sentences
from each event. This system required a technique of pre-processing existing
story corpora into event sequences. The event2event was a recurrent multi-layer
encoder-decoder network, similar to what is used within this project [12].

Harrison et al. introduces an open story generation approach using Markov
Chain Monte Carlo (MCMC) search. An MCMC method attempts to approx-
imate a posterior distribution of an unknown function by performing simula-
tion. This differs from previously discussed neural net approaches since they at-
tempted to generate stories by predicting based on previous observations. Here,
the MCMC method wants to learn the unknown distribution of a hypothetical
storyteller that is able to tell coherent stories [6].

Open-world story generators significantly reduce the burden of authorship
due to the lack of a domain model. Without a domain model, an open-world
system has an increased variety in stories it can generate. Due to this generality
though, the systems have an increase in nonsensical stories or ones that lose
track of context over time. They also rely on a massive amount of data to train
on in order to be effective.

Background

To create the models implemented in this project, many concepts within deep
learning are utilized and will be discussed below. Beyond deep learning and
neural networks, word embeddings are also used to allow the models a jump-
start with and potentially more accurate representation of words in a vector-
space.

Recurrent Neural Networks

While deep neural networks (DNN) are useful and powerful models, they are
limited with the requirement of fixed input and output dimensionality, and
therefore cannot perform sequential tasks. The RNN is an improvement upon
this model, allowing the neural network to read in a non-fixed number of vectors.
An RNN is a neural network that allows information to persist by looping with a
persistent state carried over between each iteration. This allows the RNN to be
given a sequence of inputs and compute an output at each step, with a recurrent
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state passed on to the next step in the sequence. This recurrent state is used
as a context for the current input of all previous inputs within the sequence.

If a neural network has input xi and output yi, an RNN builds on this by
passing the last hidden state hi to the next network for each input in the input
sequence (x1, ..., xt). This hidden state is then used within the next network,
along with the next input in the sequence xi+1, to compute the next output
yi+1 in the output sequence. Each value in the input sequence will be given to a
separate copy of the neural network, with each network connected as a chain by
their last hidden states. As mentioned previously, this hidden state connection
allows information to pass between steps in the neural network, and therefore
persist across the entire input. With each network computing an output yi, these
outputs can then be combined to form the RNN’s output sequence (y1, ..., yt)
[10].

RNN Overview

A simple implementation of an RNN consists of two equations. The first equa-
tion is used to compute the hidden state ht at each timestep, that will then be
needed when the RNN is given the next input in the sequence xt+1.

ht = σ(W hxxt +W hhht−1 + bh)

In this equation, σ is the activation function. A common choice for σ is tanh.
W hx represents the matrix of weights between the input and hidden layer, and
W hh is the matrix of weights between the hidden layer and itself. The output
at time t is computed as

yt = softmax(W yhht + by)

In this case, W yh is the matrix of weights between the hidden layer and output
layer. In both equations, the vectors bh and by are bias parameters that allow
each node to learn an offset. With these two equations, output yt will therefore
be influenced by input xt due to ht−1’s use in the first equation. Since yt is
influenced by xt−1 by way of the recurrent state via the hidden layers, it will
also be influenced by all previous inputs within the sequence. Figure 1 shows
an illustration of an RNN. However, within this illustration, the issue with a
basic RNN is shown. As the timesteps in the RNN increase, the contributions
of previous inputs decrease exponentially overtime, such that the most recent
input has the highest impact on the current output. The structure of various
input sequences may cause related inputs to not necessarily be adjacent, and
because of this the basic RNN implementation is not ideal [10]. Replacements
for the basic activation function have been proposed to remedy this issue, and
will be discussed in further detail below.

Long Short-Term Memory (LSTM)

An RNN’s performance can be improved further by replacing its default unit
with a more advanced one. One such unit is the LSTM. An LSTM is effective at
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Figure 1: Example illustration of an RNN by Lipton and Berkowitz

being able to capture long-term dependencies. The LSTM’s memory cell is able
to maintain its state over time, and is able to regulate the flow of information
into and out of the cell. Due to the memory cell being able to maintain a state
over time, it allows the LSTM to capture these long-term dependencies.

The LSTM replaces the RNN’s default unit, such a simple single tanh layer.
It also adds a further input/output to the node: a cell state ct. The cell state
runs through the entire chain of nodes, with only minor interactions. The LSTM
has the ability to add or remove information from this state, and information
is allowed to flow between states. This concept is extremely useful for story
generation, where it is important for the structure of a sentence, paragraph,
chapter, etc to know what information came previously [5].

LSTM Overview

At timestep t, the LSTM first decides what information is removed and forgotten
from the cell state. The forget gate layer, implemented as a sigmoid layer, looks
at the LSTM’s inputs xt and ht−1 and outputs a number between 0 and 1 for
each number in the previous cell state ct−1, where 0 is to completely forgotten
and 1 is to completely kept. The next step is to decide what new information
should be stored in the cell state. An input gate layer, also implemented as a
sigmoid layer, decides what is to be updated. A tanh layer then creates a vector
of new candidates c̃t that could be added to the new cell state. The output of
the input gate layer it is then combined with c̃t to create the update. Next,
the previous cell state ct−1 is updated. It is first multiplied with the output of
the forget gate layer ft, to forget specific things, then added with the update
it · c̃t, to finally get ct. Lastly, the output of the LSTM must be calculated. A
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Figure 2: Example illustration of an LSTM unit [17]

sigmoid layer on the inputs xt and ht−1 is used to decide what parts of the cell
state should be outputted. The cell state ct is then put through tanh to push
its values between -1 and 1 and multiplied with the output of the sigmoid layer,
resulting in ht. Both the LSTM’s output and hidden state will be this value of
ht [5].

Gated Recurrent Unit (GRU)

The GRU was proposed by Cho et al. as a new unit that is able to adaptively
remember and forget. They were motivated by LSTM, but to develop a unit
that is much simpler to compute. This simplicity comes from only needing to
compute two gating units, rather than the four LSTM contains. Besides this
gate count, a GRU is also able to capture long-term dependencies between time
steps. However, the GRU is able to do this without having separate memory
cells, unlike an LSTM [3]. It has also been shown that the GRU performs
better and is more effective with smaller datasets than an LSTM [4]. Due to
the potentially limited datasets available for certain styles of stories, the GRU
is extremely important to still allow the model to train effectively and efficiently
while capturing long-term dependencies.

GRU Overview

Figure 3 displays an illustration of the GRU’s hidden activation function. The
GRU consists of an update gate z and a reset gate r. The update gate decides
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Figure 3: Example illustration of a GRU by Cho et al.

whether the hidden state should be updated with the new hidden state h̃, while
the reset gate decides whether the previous hidden state h is ignored when
computed the new hidden state h̃. The reset gate of the j-th activation unit is
computed by

rj = σ([Wrx]j + [Urht−1]j)

Where sigma is the logistic sigmoid function, and [.]j denotes the j-th element
of a vector. x and ht−1 are the input and previous hidden state. Wr and Ur are
weight matrices that are learned. The update gate of the j-th activation unit is
computed by

zj = σ([Wzx]j + [Uzht−1]j)

Similar to rj definition. The actual activation of the proposed unit hj is com-
puted by

htj = zjh
j
t−1 + (1− zj)h̃tj

Where h̃tj is computed by

h̃tj = φ([Wx]j + [U(r � ht−1)]j)

When the rest gate is close to 0, the hidden state is forced to ignore the previous
hidden state and reset with the current input. This allows the hidden state to
drop any information that’s found to be irrelevant, forming a more compact
representation. However, the update gate also can control how much informa-
tion from the previous hidden state will be passed to the current hidden state.
This allows the RNN to remember long-term information. Each hidden unit
has separate reset and update gates. Therefore, each will learn to capture de-
pendencies in varying amounts of time. The reset gate will be frequently active
in units that learn to capture short-term dependencies, while updates will be
mostly active in units that capture long-term dependencies [3].

8



Sequence-to-Sequence Networks

An RNN is able to easily map an input sequence to an output sequence if the size
of both is known ahead of time. However, it is not clear how to apply a single
RNN to the mapping of an input sequence to an output sequence for sequences
in general. The solution to this is the sequence-to-sequence network. Using two
RNNs in tandem makes this possible, with on RNN mapping the input sequence
into a fixed-size vector, and the other RNN mapping this vector into an output
sequence. With this method, the size of both of these sequences does not need
to be known and can vary. To allow this variation, a technique is employed
where a token is defined in the sequence vocabulary to designate the end of
the sequence. With this method, the decoder is able to generate the output
sequence until the token is generated, or a max output size is reached. These
two RNNs are known as the encoder and decoder. The encoder RNN maps the
input sequence, therefore encoding the “meaning” or “concept” of the input.
The decoder will then take the encoder output, decoding the “meaning” back
into a target sequence. The goal of the network is to estimate the conditional
probability p(y1, ..., yT ′ |x1, ..., xT ), where (x1, ..., xT ) is an input sequence, and
(y1, ..., yT ′) is the corresponding output sequence. The lengths of both of these
sequences, T and T ′, may differ. This conditional probability is first computed
by obtaining the fixed-dimension vector v that represents the input sequence.
This vector is given as the last hidden state of the encoder. Then the probability
of y1, ..., yT ′ is computed by the decoder whose initial hidden state is set to v.

p(y1, ..., yT ′ |x1, ..., xT ) =

T ′∏
t=1

p(yt|v, y1, ..., yt−1)

Each p(yt|v, y1, ..., yt−1) distribution is represented as a softmax over all the
items in the vocabulary. This concept is very important for generating sentences
in a story as their lengths will vary, and this allows the model to generate a
sentence of any length [25].

Attention Decoders

A simple decoder uses only the context vector, or last output of the encoder, as
its initial hidden state. According to Bahdanau et al., a potential issue with this
approach is that because the encoder must compress the input sequence into a
fixed length vector, the network may have trouble handling long sequences. An
attention decoder, however, allows the decoder RNN to “focus” on a different
part of the encoder’s outputs for every step of the decoder’s own outputs. Mean-
ing the model is able to learn which parts of the input sequence are relevant to
which part of the output sequence without relying only on the context vector.

To accomplish this, instead of using a single context vector, an attention
decoder develops a vector ci that is filtered specifically for each output of the
encoder. The context vector ci for the i-th output depends on a sequence of an-
notations (h1, ..., hNx) that are mapped by the encoder from the input sequence
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x. Each annotation hi contains information on the whole input sequence, but
with a strong focus on parts surrounding the i-th element. The context vector
ci is computed as a weighted sum of these annotations

ci =

Nx∑
j=1

αijaj

where αij is the weight of the annotation, computed as

αij =
exp(eij)∑Nx

k=1 exp(eik)

eij is computed as
eij = a(hi−1, aj)

which is the alignment model that scores how well the inputs around position
j and output at position i match. It is dependent on the decoder’s previous
hidden state and the j-th annotation of the input sequence. This alignment
model a is a feedforward neural network and is jointly trained with the other
components within the system. Finally, with this information we can compute
the conditional probability of output yi using

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci)

where g is a nonlinear, potentially multi-layered, function that outputs the
probability of yi and si is the hidden state at time i. This hidden state is
computed by

si = f(si−1, yi−1, ci)

The output at position i is therefore based on the RNN’s previous hidden state
and the j-th annotation hj of the input sequence. Figure 4 shows how each
output yt is computed using the previous hidden state st−1 and a sum of all the
weighted annotation as the context vector after encoding the sequence x [1].

Hierarchical Recurrent Encoder-Decoder

These solutions, however, do not allow context to persist between sentences.
A sequence-to-sequence network is only able to learn the relationship between
two sentences, but has no way of ensuring that long-term dependencies are kept
over many sentences. Essentially, this becomes a system of chaining bigrams
of sentences together to form a story. The idea of a story has an overarching
narrative and ideas between sentences, such as for paragraphs, chapters, and an
entire book. For a model to effectively generate these, it must consider more
than just the most recent sentence. The idea of storing context over time for
deep learning has been explored in several similar problems recently, such as
context-aware query suggestion and dialogue systems.

Sordoni et al. improves upon the sequence-to-sequence encoder-decoder
concept by developing a hierarchical recurrent encoder-decoder for generating

10



Figure 4: Example illustration of an attention decoder by Bahdanau et al.

context-aware query suggestions. The idea is to not only have an RNN for en-
coding the input sequence, and an RNN for decoding the output sequence, but
also a context encoder RNN to encode a sequence of encoded sequences. This
context encoder’s hidden state is then used within the decoder RNN to allow
it to have a context of all input sequences encoded up to that point when it
decodes the output sequence, and therefore is able to know beyond the most
recent sequence. This implementation splits this up into query-level encoding,
session-level encoding, and next-query decoding.

The query-level RNN reads in each word from a queryQm = {wm,1, ..., wm,Nm
}

for each training session, or sequence of queries. It updates its recurrent state
hm,n using each word wm,n and the previous hidden state hm,n−1 as inputs for
the GRU such that

hm,n = GRUenc(hm,n−1, wm,n), n = 1, ..., Nm

where hm,n ∈ Rdh and hm,0 is the null vector. Therefore, the last recurrent state
hm,Nm

is the fixed-length vector that stores information on all words within the
query Qm, and is denoted as qm. This vector will be used within the session-
level encoder and is a general, acontextual representation of the query. It is also
possible to compute all these vectors q1, ..., qM in parallel.

Next, the session-level encoder takes the input of all final query-level en-
coder recurrent states and computes a sequence of session-level recurrent states
s1, ..., sM . It uses its own GRU function, where its recurrent state is of the
session-level dimension, potentially different than the query-level dimensional-
ity. It’s recurrent state sm is updated according to

sm = GRUses(sm−1, qm),m = 1, ...,M

where sm ∈ Rds and s0 is also initialized as the null vector. The number of
session-level recurrent states is the number of queries in the session. Each
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session-level recurrent state summarizes the queries that have been processed
up to position m within the session and is sensitive to the order of previous
queries. It also inherits the sensitivity of the order of words in a query from the
query vectors qm.

Lastly, next-query decoding is an RNN decoder responsible to predict the
next query Qm given the previous queries Q1:m−1. By doing this, the decoder
estimates the probability

P (Qm|Q1:m−1) =

Nm∏
n=1

P (wn|w1:n−1, Q1:m−1)

In this instance, the decoder’s recurrent state is initialized with a non-linear
transformation of the session-level encoder’s last recurrent state sm−1 according
to

dm,0 = tanh(D0sm−1 + b0)

where dm,0 ∈ Rdh , D0 ∈ Rdh×ds projects the query-level vector sm−1 into the
decoder’s space, and b0 ∈ Rdh . This allows the information of the previous
queries to be transferred to the decoder RNN. The decoder recurrent state
dm,n is updated with its own GRU function, and each recurrent state is used to
compute the probability of the next word wm,n+1 given both the previous words
wm,1:n and previous queries Q1:m−1. The probability of word wm,n is computed
as

P (wm,n = v|wm,1:n−1, Q1:m−1) =
exp o>v ω(dm,n−1, wm,n−1)∑
k exp o>k ω(dm,n−1, wm,n−1)

where ov ∈ Rde is the output embedding of word v and ω is a linear trans-
formation layer that’s used instead of computing the decoder’s recurrent state
directly. ω is computed as

ω(dm,n−1, wm,n−1) = H0dm,n−1 + E0wm,n−1 + b0

where H0 ∈ Rdedh , E0 ∈ RdeV , and b0 ∈ Rde . When predicting the first word
in the query Qm, wm,0 is set to the null vector. The parameter E0 modi-
fies how much the previous word is responsible for predicting the next word.
Therefore, the word v has a high probability when ov is “near” the vector
ω(dm,n−1, wm,n−1) Figure 5 shows an illustration of the model with example
queries.

Sordoni et al. note the impact of session length and of context length in
an HRED model. The HRED model’s performance increases significantly as
the session’s length, or number of queries, increases. For shorter sessions the
improvement over pairwise models is marginal, but consistent with that it is
slightly improved by the short context [24].

Word Embeddings

Input for recurrent neural networks is always in the form of vectors, but they
are applied in many natural language problems. For the networks to take an
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Figure 5: Example of an HRED illustrated by Sordoni et al.

input sequence of natural language, vector representations of words must be
developed. One such way to do this is creating one-hot vectors for words, with
every index in the vector representing a different word from the vocabulary. This
approach, however, is not ideal, as it leads to very large and sparse vectors, and
will likely not provide a semantic relation from one word to another. Word
embeddings provide such relations between words in a vocab, creating a vector
space representation of the words [19].

Within the experiments for this project, two different models for creating
word embeddings are used: GloVe [19] and Word2vec [16]. These models are
able to map various statistics of words down to smaller and denser vectors
than the previously mentioned one-hot vectors. The resulting vector space also
captures the semantic meaning of words within the corpus the model was trained
on, where semantically similar words are mapped to vectors near each other [19].

GloVe

Proposed by Pennington et al., GloVe is a count-based model that uses the
statistics of word occurrences within a corpus. It is able to use word-word
co-occurrence counts and global corpus statistics to develop its word represen-
tations. The model uses a method to find the relationship between two words,
i and j, and studies their co-occurrence probabilities with various probe words
k. The probability of word j appearing within the context of word i is denoted
as Pij , calculated by

Pij = P (j|i) =
Xij

Xi

where Xij denotes how many times j appears in the context of i and Xi =∑
kXik.
As an example, given i = ice and j = steam, the ratio Pik/Pjk would be

large for a word unrelated to j, such as k = solid. For words related to j and
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not i, such as k = gas, the ratio would be small. Finally, for words either related
to both i and j, or to neither, such as k = water or k = fashion, the ratios will
be close to one.

Using these co-occurrence probabilities, the authors propose a model with a
weighting function to filter out rare co-occurrences as noise.

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − log(Xij))2

Where V is the size of the vocabulary, w ∈ Rd are word vectors and w̃ ∈ Rd are
separate context vectors. These vectors are equivalent when the co-occurrence
matrix X is symmetric, and only differ as a result of their random initializations.
bi and b̃j are biases, with bi used as a bias for wi, and b̃j an additional bias for
w̃j to restore symmetry. Finally, f(x) is the weighting function parameterized
as

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise .

where xmax and α are parameters, set to xmax = 100 and α = 3/4 by Pennington
et al.

The model produces a set of word vectors W and W̃ , and the sum of the
two, W + W̃ , is the final resulting word vectors for the corpus [19].

Word2vec

On the other hand, word2vec is a predictive-based approach. It attempts to
learn its word vectors via the loss of predicting the target word from context
words given a word vector representations. Mikolov et al. detail two approaches
for this model: continuous bag-of-words (CBOW) and continuous skip-gram.

Continuous bag-of-words: The architecture for CBOW is similar to a
feedforward neural net language model with the non-linear hidden layer removed
and projection layer is shared for all words. Therefore, all words are projected
into the same position by averaging their vectors. In this architecture, the order
of words in the history does not influence this projection, and words from the
future are obtained. For example, shown in Figure 6a, computing the projection
for some word wt takes two words from the history and two words from the
future. Therefore, the current word is predicted based on the sum of vectors
from its surrounding words within the context window [15].

Continuous skip-gram : The continuous skip-gram architecture is similar
to that of CBOW. Instead of predicting the current word based on the context,
it attempts to maximize the classification of a word based on another word
in the sentence. Each current word is used as an input to a log-linear classifier
with a continuous projection layer, and predicts words within a certain range, or
window, before and after the current word. In this case, increasing the window
size improves the quality of the word vectors while increasing the computation
complexity of word2vec. Since more distant words are likely to be less relevant
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to the current word, they are weighted less than closer words. Figure 6b shows
computing the four words in the window surrounding some word wt [15].

(a) Continous Bag-of-Words (b) Continuous Skip-gram

Figure 6: Illustrations of both word2vec implementations by Mikolov et al.

Comparison

Baroni et al. provide an extensive comparison of count-based and predictive-
based models, resulting in a superior performance for predictive-based methods
[2]. The main difference between the two methods listed above is that GloVe
attempts to capture semantic similarity by capturing the global statistics of
how words appear. Word2vec uses local windows to capture this similarity, and
words only have the same semantics when words in these windows are similar.
GloVe has the ability to be parrallelized, and therefore can quickly train on
a large corpus. It is also able to incorporate global statistical properties of
the corpus into its resulting word vectors. However, words that co-occur with
other words frequently, such as water with steam and ice may be filtered out
as noise [19]. Word2vec is able to preserve arithmetic functionality for semantic
analogies (such as king −man + woman = queen) using the distance between
words. Since this model only takes into account relations between words in
a pre-defined window, some semantic similarity between words may be lost
[15]. In practice, both types of word embedding models may perform better on
different datasets [2], and in this paper both types were used to measure their
effectiveness on the corpus.
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Architecture

The goal of this project was to implement both a sequence-to-sequence network
and hierarchical recurrent encoder-decoder and explore the applicability for
them to open story generation using naturally occurring story text. These mod-
els are trained on the corpus of a novel, a small corpus in comparison to other
natural language datasets, and attempt to predict sentences. The sequence-
to-sequence network was implemented using PyTorch. The HRED model was
developed by implementing a context encoder into this existing sequence-to-
sequence network.

Beyond the models, various word embeddings were implemented, both pre-
trained ones on a Wikipedia dataset, and custom ones trained on the corpus
used in this project. The use of various embeddings were important for two
reasons: to reduce the loss value of the training model, as well as getting a head
start on the accuracy of the initial vector space for word representation.

Explanations of each implementation of these models, as well as the integra-
tion of word embeddings, can be found in further detail below.

Sequence-to-Sequence Network

The sequence-to-sequence network was implemented by creating an encoder
RNN and an attention decoder RNN. Both RNNs are multi-layer GRUs, imple-
mented by PyTorch. GRU was chosen, as opposed to LSTM, for its increased
performance when training on smaller datasets. An embedding vector dimen-
sion of 300 was chosen to correspond with custom embeddings, and a hidden
state dimension of 256.

Data for the model is expected to be in the form of a list of sentence pairs,
where each pair contains two sentences in the same order they would be found
in within the corpora.

Sentence encoder

The encoder for the sequence-to-sequence network contains the GRU and an
Embedding. The GRU was chosen over LSTM for several reasons mentioned
previously. It’s been shown to be more effective on smaller datasets [4] and
is simpler to compute, potentially speeding up training time [3]. It is able to
provide these benefits while still being able to capture long-term dependencies.
The input for our GRU was the embedding’s output wi ∈ R300 and the previous
hidden state hi−1 ∈ R256. The Embedding is used to translate the input word
xi into a vector with the word’s corresponding values within the embedding wx.

For each word in the input sentence, the GRU is given these parameters and
used to encode the sentence. Therefore, for sentence Sm = {xm,1, . . . , xm,n},
the hidden state for each word n = 1, . . . Nm is updated as

hm,i = GRUenc(hm,i−1, wm,)
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where h0 = 0 and wm,i denotes the output of the embedding given the input
word xm,i.

Attention decoder

Like the encoder RNN, the decoder also contains a GRU and Embedding. How-
ever, because this is an attention decoder, extra steps must be taken to compute
the context vector at each output yi. First, a set of attention weights is calcu-
lated with a feedforward layer with the decoder’s input and hidden state. These
weights are then multiplied by all of the encoder’s output vectors to create the
weighted combination. After the attention weights are applied, we have the de-
coder’s input for the GRU wi ∈ R300 and the previous hidden state hi−1. The
decoder’s next hidden state is calculated with

hi = GRUdec(hi−1, yi−1, ci)

The GRU also gives the decoder’s output, ỹi, that is then put through a linear
transformation to make ỹi ∈ RX where X is the max sentence length. The final
decoder output is then computed with

yi = log(softmax(ỹi))

Hierarchical Recurrent Encoder-Decoder

As discussed earlier, a hierarchical recurrent encoder-decoder is similar to the
sequence-to-sequence network, with the addition of context-awareness. Between
the encoding and decoding phases, a context encoding phases is implemented.
This was implemented by running the last hidden state of the sentence en-
coder RNN for each sentence in the paragraph into the context RNN. After
the second-to-last sentence of the paragraph is encoded, and its encoded vector
passed through the context RNN, the decoding phase begins. The decoder’s
hidden state is now initialized on the context RNN’s output, with the last con-
text RNN hidden state used during each state in the decoder RNN. A GRU was
used once again, to keep consistent with both the sequence-to-sequence network
and the HRED model described by Sordoni et al. As stated previously, GRUs
also provide increased performance when training on smaller datasets. An em-
bedding dimensionilty of 300 was chosen for use with custom embeddings, and a
hidden state dimensionality of 256 for consistency with the sequence-to-sequence
model.

The data for the model is expected to be in the form of a list of paragraphs,
where each paragraph is a list of five sentences. These paragraphs are expected
to contain sentences in the same order they would be found in in the corpora.

Sentence encoder

The encoder RNN used for HRED is the exact same as the one describe for a
sequence-to-sequence network. It uses a GRU and Embedding and its outputs
and hidden state is passed along to the context encoder and decoder.
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Context encoder

The context encoder RNN is the main deviation of the sequence-to-sequence
network. Since it does not need to transform words into natural language, it
makes no use of an Embedding. It is also very similar to the GRU, in that it
encodes a sequence of vectors into a single vector of potentially different dimen-
sions. It takes the final hidden state of each sentence encoder: hm,1, . . . , hm,Nm

for paragraph m as its input. The GRU updates each hidden state of the en-
coder according to: cm,n = GRUctx(cm−1, em) where em = hm,Nm

. The context
hidden state at cm therefore summarizes all input sentences up to point m. For
simplicity, the dimensionality of the context states was left at the size of the
embeddings, such that cm ∈ R300.

Attention decoder

The attention decoder RNN is also similar to the RNN used for the sequence-
to-sequence network. In this case, a third feedforward layer is added with its
inputs as the previous attention outputs and the most recent context hidden
state. The output of this transformation is then given to the GRU along with
the decoder’s last hidden state, which is initialized as the context encoder’s
output.

Experiments and Results

Similar experiments were conducted on both architectures in their final states.
Models for each architecture, with various word embeddings, that had the lowest
training loss values were used for comparison. In doing this, we hoped to find
the best architecture and embedding combination, and test the viability of these
architectures for storytelling. A dataset from a Harry Potter story text was used
to create the training and test sets, and was kept consistent for each model in
both architectures. Perplexity was used as the evaluation metric to score each of
these models, since evaluating the predicted sentence against the target sentence
does not provide significant differences. These translation metric experiments
will be detailed for the sequence-to-sequence model below. Perplexity scores are
calculated in four different ways:

• Actual sentences: The perplexity of the model when given the actual
target sentence it should predict

• Random sentences: The perplexity of the model when given another ran-
dom sentence from the testing dataset rather than the target sentence

• Exact random sentence: The perplexity of the model when given another
random sentence that is of the same length as the target sentence

• Random words: The perplexity of the model when given a sentence of the
same length as the target sentence, but composed of random words taken
from the corpus.
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Of these four tests, actual sentences are the ones we hope to score the best,
i.e. have the lowest perplexity scores, and random words should score the worst.
The reasoning is we need a model that is trained to most likely predict the
correct next sentence, and therefore a sentence that makes sense in the current
context, rather than a sentence composed of random words or one with no
connection to the context. The two random sentence scores are calculated to
determine if the model is able to recognize a sentence structure over words taken
at random.

For both models, when the predicting of a sentence is done, beam search has
been implemented. This allows the models to search for the top-k words at each
timestep in the hopes of finding a better prediction. The idea behind this is
that since the output of the decoder at each time step is used in the next step,
a potentially lower overall score could be found by taking a word in the k first
words at the previous step, rather than the actual first word. This evaluates the
top-k words at a timestep t, and for each word in the next timestep t+ 1, their
top-k words, resulting in k2 scores and partial sentences. Then, the top-k of
these k2 combinations is taken and used in the next timestep t+ 2. Since these
sentences could vary in length, and sentences are generated until the “end-of-
sentence” token is generated, a sentence that has ended is saved unless it drops
out of the top-k from a better scoring sentence. The resulting final sentence
is potentially different, and if so, a lower score, than if just the top words had
been taken at each timestep.

Data and Parsing

To train the models, a corpus of the first Harry Potter novel was used: Harry
Potter and the Sorcerer’s Stone [22]. The novel was parsed into a list of sen-
tences, where the order of the sentences in the list is the order they appear within
the novel. A sentence was determined as a series of words, potentially over mul-
tiple lines in the novel, and were split with various methods. Firstly, they are
split on a sentence terminator: a period, exclamation point, or question mark.
Sentences were also potentially split on ellipses, or multiple periods, in a näıve
method of if the word following the ellipsis began with a capital letter. Lastly,
dialogue, or a word or series of words surrounded by single or double quotes,
were also split into their own sentences. Along with this sentence splitting, all
text was lowercased and all punctuation was removed, except select punctuation
such as exclamation points and question marks, kept for their potential seman-
tic usefulness within the sentence. Contractions were also tokenized out, such
as “would’ve” to {would, ‘ve} or “Harry’s” to {Harry, ‘s}. In this case, single
quotes were kept for their use with pre-trained word embeddings. Various other
parsing methods were implemented that specifically relate to the given text,
such as removal of chapter titles, “stuttering” dialogue, changing of slang words
to their actual words, and others, in an attempt to create a smaller vocabulary
and more accurate sentence representation of the novel. The accuracy of these
parsing methods was never calculated, but the amount of sentences that may
be incorrect or contain unwanted text, such as chapter titles or page numbers,
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is negligible with respect to the rest of the data that is correct. These inconsis-
tencies should not have had much of an effect on the models trained with this
data.

This list of parsed sentences was then used to generate the train, validation,
and test datasets for both models. A total of 7,093 sentences were parsed from
the story text, with a vocabulary size of 2,682.

Sequence-to-Sequence data

The sequence-to-sequence data was developed by creating pairs of all the sen-
tences, where each pair is a sentence with the sentence that follows it. For exam-
ple, a group of sentences {s0, s1, ..., sk−1, sk} would create the pairs
{(s0, s1), (s1, s2), ..., (sk−2, sk−1), (sk−1, sk)}. Since sequence-to-sequence is a
pairwise method, a list of sentence pairs is enough for its dataset. A total
of 7,092 sentence pairs were created, being further split into training, valida-
tion, and test sets. The training set contained 5,106 pairs, the validation set
had 567 pairs, and the test set had 1,419 pairs.

Hierarchical Recurrent Encoder-Decoder data

As for the HRED model, the list of original lines, before the sentence parsing
process, were divided into paragraphs, resulting in a list of paragraphs. This was
done in a näıve method of how the provided text document was organized: each
paragraph was separated by a blank newline. The list of paragraphs {p0, ..., pk}
is now created, where each paragraph pi = {l0, ..., ln} is a list of n lines. Each
paragraph was then parsed into its actual list of sentences to get the exact
list of m sentences: pi = {s0, ..., sm}. Then, to filter out short paragraphs
and single sentences, only paragraphs of five sentences or larger were used. To
be consistent with previous work [23] on using an HRED, these paragraphs
were then truncated to length five so that every data point had five sentences.
Due to this, during the evaluation phase, the fifth sentence is always the one
that is predicted. We fixed the paragraph size for two reasons: firstly, having
a minimum of five paragraphs ensures that a significant amount of history is
provided when predicting each sentence. Secondly, predicting the sentence in
the same position of a paragraph keeps a consistent amount of history for each
data point. A total of 260 paragraphs were created, being further split into
training, validation and test sets. The training set contained 166 paragraphs,
with 42 in the validation set, and 52 in the test set.

Word Embeddings

The model learns word embeddings naturally while it trains, but their initial
values may help or affect how the model trains or how long the training takes.
Three types of word embeddings were used within the project for various exper-
iments. First, is a default random embedding, where the vector for each word
is random. Next, a pre-trained GloVe 300-dimension embedding, trained on a
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2014 Wikipedia dump and Gigaword 5, was used. The corpus for this embed-
ding contained 6 billion total tokens, and a vocab of 400,000 words. Lastly,
two custom embeddings were created from the entire Harry Potter corpus (all
7 novels) using word2vec [16], one with continuous bag-of-words, the other with
skip-gram. Both embeddings were 300-dimensions and trained with a window
size of 5 tokens. The theory of the two non-random embedding types was to
provide a head start with the accuracy of the vector space for word represen-
tation. The custom embeddings, in comparison to the GloVe embedding, were
developed to hopefully have the words’ semantic relations be based off how they
are used in Harry Potter, which may differ to their use in other texts, as well as
include Harry Potter -specific words in the vector space. The main issue with
these custom embeddings, however, is the size of both the corpus and the vocab.
In comparison to the GloVe embedding’s token count and vocab size, the Harry
Potter corpus that was created has only 2,253,370 tokens. Of those tokens, only
1,220,874 remained after stopwords were filtered, which was the corpus that was
used. Along with the token count, its vocabulary size had only 11,834 words.
This lack of data, either token count or vocabulary size, most likely hindered
this type of embedding.

Model Training

Sequence-to-Sequence Training

To train the model, an input sentence is given to the encoder, with every out-
put and last hidden state stored. The decoder is then given a special “start-
of-sentence” token as its first input and the previously stored last hidden state
of the encoder as its first hidden state, with subsequent encoder outputs given
to the decoder as inputs to compute the context vector for attention. Occa-
sionally, for about half the data trained, teacher forcing is used. In this case,
the real target output is used as input rather than the previous output of the
decoder. The loss value for each decoder output is calculated as the negative
log likelihood loss between the decoder output, and the target output within
the target sequence. The model is trained for a specified amount of epochs, or
a complete iteration through the training data, while calculating the loss value
at each epoch. Validation values were calculated by creating a validation set,
made up of 10% of the training pairs selected at random, and calculating the
loss for each validation pair with the model at its current epoch after freezing
learning

Hierarchical Recurrent Encoder-Decoder Training

Training of the HRED model is similar to the sequence-to-sequence network.
The decoder is given the “start-of-sequence” token as its initial input, but now
its initial hidden state is initialized with the context RNN’s output, rather than
the null vector. Teacher forcing is used for about half the dataset, at random.
The loss value for each paragraph was calculating by taking the negative log
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likelihood loss between the decoder output and the target output only for the
final sentence in the paragraph. The models are similarly trained for a specified
number of epochs, with 10% of the training data being used for validation to
validate loss values after freezing training.

Model Evaluation

Once trained, the models can then be evaluated. This step is similar to the
training step, however, after the inputs have been encoded, the top-1 (or if
using beam search, top-k) prediction is generated by the decoder to form the
output sentence, until the “end-of-sentence” token is generated, or max sentence
length is reached. These predicted sentences can then be used with translation
metrics, such as BLEU or METEOR, to score the prediction compared to the
real target sentence.

Translation metrics

Two translation metrics were used in the initial experiments for the sequence-
to-sequence network. These metrics, BLEU and METEOR were used to score
predicted sentences against target sentences.

BLEU is a method for automatic machine translation that is language inde-
pendent and is quick and inexpensive to compute. It is used to compare trans-
lations produced by a machine with a professional translation or translations.
Its score then provides an assessment of the quality of the machine translation.
The baseline of BLEU uses n-gram precision to compare the reference and can-
didate translations. It counts up the number of matching n-grams between the
translations, with more matches meaning a better candidate translation. BLEU
then modifies this idea by truncating the total amount of matches of a specific
n-gram by its total amount of occurrences of this n-gram in the reference text.
A summation of all n-gram matches from the candidate translation, truncated
by the amount found in the reference, and divided by the total count in the
candidate provides the score for a single translation. The equation for this is as
follows

BLEU =

∑
n-gram∈C Countclip(n-gram)∑
n-gram′∈C′ Count(n-gram′)

where C and C ′ are the candidate and reference translations, respectively.
BLEU ’s resulting score will be between 0 and 1, with 0 meaning no match,
and 1 being an exact match [18]. In this project, we use an implementation
provided by NLTK [11].

METEOR another method for automatic translation evaluation, and is shown
to significantly outperform the BLEU metric. One improvement, noted by Lavie
and Agarwal, is that BLEU does not provide reliable sentence-level scores, as
it was originally designed to compare the translations of an entire corpus. ME-
TEOR was designed specifically for evaluation of translation at the segment
level. The score it computes is this metric is based on explicit word-to-word
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matches between a candidate and reference translation. This is done by cre-
ating a word alignment between the two strings. This alignment is a mapping
between words in the strings such that every word in each string maps to at
most one word in the other string. Initially, all possible word matches is com-
puted, and the largest subset of these matches is used as the word alignment. If
more than one subset are of this largest value, the metric selects the one who’s
word order is most similar as the alignment. This is done by picking the map-
ping that has the least amount of intersections between words. With this final
word alignment, the score can be computed. First, the harmonic mean, Fmean,
between the unigram precision P and the unigram recall R must be computed

Fmean =
P ·R

α · P + (1− α) ·R

where the unigram precision is calculated as P = m/t and the unigram recall
is calculated as R = m/r. In these equations, m is the number of mapped
unigrams found between the two strings, t is the total number of unigrams in
the candidate translation, and r is the total number of unigrams in the reference
translation. These equations are all based on single-word matches. In order to
take into account the order of matched unigrams are between the two strings,
a penalty Pen is computed. The sequence of matched unigrams between the
strings is divided into the fewest number of chunks where the matched unigrams
in each chunk are adjacent and in identical order in both strings. The number
of chunks ch and number of matches m are used to calculate the fragmentation
fraction frag = ch/m. The penalty is comptued as

Pen = γ · fragβ

γ and β are parameters, where (0 <= γ <= 1) determines the maximum penalty
and β determines the functional relation between fragmentation and the penalty.
Finally, the METEOR score can be computed as

METEOR = (1− Pen) · Fmean

[7]
The METEOR metric for this project was provided by a custom Python

implementation3 based on the algorithm described by Banerjee and Lavie [7].

Perplexity

The main evaluation method used in these experiments is perplexity. The per-
plexity of a probability model is a metric used to evaluate trained models. In
a sense, it is used to determine how “perplexed” a model is with target output
after given its associated input. A lower perplexity will indicate that the model
performs well at predicting the target output. It is calculated with the equation

perplexity = b−
1
N

∑N
i=1 logbp(xi)

3github.com/zembrodt/pymeteor
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Where p is a proposed probability model, and (x1, . . . , xN ) is the test sample.
Specifically for these models, the perplexity is calculated by forcing the models
to output the target sentence after given the input sentence(s). A value of b = e
was used as a portion of this equation, specifically because lnp(xi) was already
calculated by PyTorch.

Sequence-to-Sequence Results

The experiments conducted for the sequence-to-sequence model can be broken
down into several sections as various concepts were implemented or tested: base-
line, beam search, and custom embeddings. Since these were implemented in
various stages of the project, the code used to parse the natural language in the
novel may not be consistent through all experiments, but the results from each
experiment should not be greatly affected by this. The following sections will
discuss the process of experimenting with this implementation and its results.
In the final section, custom embeddings, the end results of the sequence-to-
sequence model will be provided and discussed. These results will be what is
used to compare against the HRED model.

Baseline implementation

The baseline implementation is the bare-bones implementation of the sequence-
to-sequence network. Beam search had not yet been implemented, only evalu-
ating with the top-1 result, and random embeddings were used. Unfortunately,
at this point in time, perplexity was not being calculated correctly, and would
not be fixed until beam search was implemented. At this point, however, we
have results from the translation studies.

Epochs BLEU score METEOR score
10 0.0 0.0157
40 0.0 0.0389

Table 1: Baseline implementation BLEU and METEOR scores

The initial results in Table 1 had poor analysis scores, both at 0 or near 0.
For both BLEU and METEOR, scores range from 0 to 1, with 1 meaning an
exact match. However, the sentences they predicted were promising at the time.

Beam search

At this point, the evaluation of the trained model was updated to include beam
searching of the top-k results, rather than the default top-1. The implementa-
tion of this was to check if the best scoring output sentence was perhaps not
found by taking the top-1 output at each stage of the decoder, but somewhere
else. This model was once again trained for 40 epochs.
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Epochs BLEU score METEOR score
40 0.0 0.0346

Table 2: Beam search BLEU and METEOR scores

This model showed no real improvement with the translation metric scores,
as shown in Table 2, but the first perplexity study was also done during this
stage.

Epochs Actual sentences Random words
25 85241.0183 306539.759

Table 3: Perplexity scores for “Actual sentences” and “Random words”

While the perplexity scores in Table 3 were not very good, particularly due
to the small amount of epochs the model was trained for, the actual sentences
score being fairly smaller than the random words score was promising, meaning
the model had learned the structure of a sentence as more than a random
assortment of words.

Custom word embeddings

The bulk of experiments were conducted with custom word embeddings. At
this point in the project, models started to be trained for a larger amount of
epochs, ranging from 100 to 500, and the under-fitting of the model to the
data became apparent. The value of loss while training was also calculated and
recorded for comparison and analysis of each model. It was also determined that
translation metrics such as BLEU and METEOR may not be ideal to measure
the effectiveness of the model, at least in its current state, and were no longer
calculated.

Figure 7 shows an initial training of the model using the GloVe word em-
bedding discussed previously, trained to 100 epochs. While its final loss value
of around 6.72 is not an ideal value, this model seemed to still be learning, and
the loss decreasing, when it finished training at 100 epochs. Nevertheless, it was
decided to train two custom word embeddings with word2vec using the entire
Harry Potter corpus, as discussed previously. Figures 8a and 8b show results for
both skip-gram (SG) and continuous bag of words (CBOW) implementations.

At this point, the SG implementation seemed the most promising, having
finished training for 100 epochs with a loss value of 4.807. It was decided then
to do a full study on all word embedding implementations for a full comparison
between them, and for a larger amount of epochs.

Figure 9 shows a comparison between random (called none), GloVe, word2vec
with SG, and word2vec with CBOW embeddings. The result shows that out of
all the models tested, only GloVe had any improvement, with a decreasing loss
value after 500 epochs. However, it became apparent that the project developed
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Figure 7: Initial training with GloVe

was incorrectly saving and loading models, causing a large spike in the loss value
when a checkpoint was loaded (see emphasis of GloVe value in Figure 9).

After conducting this comparison, however, it was determined that the cus-
tom word2vec embeddings should be trained on the Harry Potter corpus for
longer. At this point, both were trained for 15 epochs over the corpus, taking a
little over one minute. CBOW also seemed to be the better implementation to
move forward with, rather than SG.

Figure 10 shows a comparison of two models trained for 500 epochs. One
with the 15-epoch CBOW embedding, the other with a 300-epoch CBOW em-
bedding. This result was once again corrupted by the loss spiking of loading a
checkpoint (emphasized) for the 300-epoch CBOW embedding. However, before
the checkpoint, the 300-epoch CBOW embedding was performing better, so it
could be argued that training the word embedding for a larger amount of epochs
positively affected the model’s loss value while training.

Now it was determined to do a comparison of the custom CBOW embedding
with the GloVe embedding, for 500 epochs, without any checkpoint loading, as
this issue still hadn’t been corrected.

Figures 11a and 11b compare these two embeddings with one another. Train-
ing with the CBOW embedding was not beneficial for the model’s training pro-
cess, and overall was not decreasing the loss value. GloVe, however, performed
well. Without having to checkpoint, the loss value never spiked (after the ini-
tial spike), reached a minimum value of 2.983, and a final value of 3.083 at the
500th epoch. This was a much better epoch score than the 4.0 to 7.0 and greater
values calculated earlier. Perplexity studies were once again conducted on this
model, giving even more interesting results.
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(a) Initial training with word2vec SG (b) Initial training with word2vec CBOW

Figure 8: Comparing implementations of word2vec embeddings

Figure 9: Comparing all embeddings

Perplexity results

In Table 4, a further perplexity study was developed for actual sentences, random
sentences, and random words. Out of the three categories of studies, actual
sentences is the one that should ideally perform the best, as they are the real
sentences to follow the input sentences. However, this was not the case. As
shown in Table 4, the random sentences study actually performed best. This
is not ideal, but the scores for actual sentences are relatively close, within the
same decimal place. On the other hand, both scores are much lower than those
of random words, which shows that the model has learned the formation of
sentences as more than just random words. The model trained for 500 epochs,
however, gave higher perplexity scores than the model trained for only 250
epochs. This could be as a result of the model overfitting more on the training
data, and therefore performs worse on data it has not seen. The perplexity
scores of both models on the training data seems to confirm this, with the value
on actual sentences being reduced from 42.989 to 37.041 for the 500 epochs
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Figure 10: Comparing different word2vec CBOW embeddings

(a) Initial training with CBOW (b) Initial training with GloVe

Figure 11: Comparing models trained with CBOW and GloVe

model. Finally, the actual perplexity themselves were extremely high for the
testing data, further showing that perhaps the model hasn’t learned enough to
handle unseen data. One cause of this could be due to the lack for training
data, with just over 5,000 sentence pairs.

Hierarchical Recurrent Encoder-Decoder

The experiments for the updated HRED model were conducted in a similar man-
ner to the custom word embedding experiments of the sequence-to-sequence net-
work. The model was trained using three different embeddings: random, GloVe,
and the custom word2vec CBOW embeddings. All models were trained for 1000
epochs with their loss values compared. However, for this model two different
optimizers were compared: Stochastic gradient descent (SGD) and Adam. The
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Epochs Perplexity

250
Actual sentences 736176.1818
Random sentences 299692.5997
Random words 147674868.5

500
Actual sentences 4872462.827
Random sentences 2313469.597
Random words 6201033178

Table 4: Perplexity scores for model in Figure 11b

results of these experiments showed that the SGD optimizer provided better
training loss values with congruent validation loss values, while the Adam op-
timizer’s validation loss values dramatically increased and deviated from the
training loss values. This is good for consistency as the sequence-to-sequence
models all used SGD for their optimizer. Comparisons were also done for the
models using two different values for the learning rate: 0.01 and 0.0001. In this
case, 0.0001 was found to provide better results, which is also consistent with
the value used for the sequence-to-sequence models.

Figure 12: Model trained with Adam optmizer and GloVe embedding

Figure 12 shows the initial loss values of an example model using the Adam
optimization algorithm and a learning rate of 0.01. As shown, the validation loss
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value dramatically diverges away from the training loss value, with no level-off
after 1000 epochs. The cause of this was unknown, but shows that the model
does not perform well when working with data it has not seen. Models trained
with the random and custom CBOW embeddings also resulted in similar loss
patterns.

Figure 13: Model trained with SGD optimizer and GloVe embedding

Figure 13 shows an example model trained with the SGD optimizer, and also
with the GloVe embedding and a learning rate of 0.01. These validation loss
values are more congruent with the training ones, and follow a similar pattern
to the loss results from the sequence-to-sequence models. Results from the ran-
dom and custom CBOW embeddings provided similar loss patterns. However,
since the learning rate for this model used is still 0.01, the model could still be
improved.

Figures 14a, 14b, and 14c are the final models trained. They used the SGD
optimizer with a learning rate of 0.0001 and were trained for 1000 epochs. With
the smaller learning rate, the loss values for each model improved with respect
to the previous values from the larger learning rate of 0.01. The values also are
much similar to those of the sequence-to-sequence model. The models trained
with the GloVe embedding had a final loss value of 4.07 for the HRED model,
compared to sequence-to-sequence’s value of 3.083. For the custom CBOW
embedding, the final loss value was halved with the HRED model.
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(a) Model trained with a
random embedding

(b) Model trained with the
GloVe embedding

(c) Model trained with the
custom CBOW embedding

Figure 14: Models trained with all embeddings and the SGD optimizer

Embedding Perplexity

Random

Actual sentences 2826.049
Random sentences 3125.4459
Exact random sentences 2812.2747
Random words 23585.7831

GloVe

Actual sentences 1174.7250
Random sentences 1114.8894
Exact random sentences 1033.2969
Random words 18572.4679

Potter

Actual sentences 1592.9276
Random sentences 1447.1607
Exact random sentences 1361.7506
Random words 24280.3667

Table 5: Perplexity scores for models in Figure 14

Perplexity results

A similar perplexity study to the one done for the sequence-to-sequence models
was done for these three HRED models as well. This study compared perplexity
values for each model in four parts: actual sentences, random sentences, exact
random sentences, and random words. To find the perplexity score for each of
these, the model was given the first four sentences of a paragraph, and then a
sentence corresponding with each test, as described previously. The perplex-
ity score was calculated for this sentence and recorded. The sentences were all
created from the testing data to see its performance with data it has not seen
before. The results of the testing data is also used to compare with the test-
ing data results from the sequence-to-sequence models to see if the addition of
context has made a significant improvement of the model.

The perplexity study was run 100 times for all three embeddings, and the
average perplexity scores taken.

Table 5 shows the results of this study. It was found that the perplexity scores
of actual sentences, random sentences, and exact random sentences significantly

31



outperform the perplexity scores of random words. For each embedding, the
scores for the actual and random sentence in the testing data is very similar,
such as GloVe having 1174.725 and 1114.8894 respectively. For this embedding,
the random words score was extremely high at 18572.4679. This is because, in
both cases, the model was able to similarly recognize that the sentence it was
given was a properly constructed sentence with respect to the training data. In
all three embeddings, the values for exact random sentences scored the best.
This potentially shows that the length of the target sentence had some affect
on the perplexity value, as all three scored better than random sentences of
varying length. Besides random words, actual sentences scored the worst in both
custom embeddings. This could be due to the fact that some sentences taken
at random from the corpus will potentially score better than the single actual
target sentence. If this is the case, and over half the sentences score better
than the target, then on average both random sentences and exact random
sentences will score better than the actual sentence. However, the perplexity
scores for all three are on relatively close, and much smaller than random words,
proving the model has learned the structure of a sentence with data it has not
seen before. Finally, once again, as shown by the sequence-to-sequence model’s
results, the GloVe embedding created models that scored the best, with the
custom word2vec CBOW embedding scoring close behind it.

Model Epochs Perplexity

Seq2Seq 500
Actual sentences 4872462.827
Random sentences 2313469.597
Random words 6201033178

HRED 1000
Actual sentences 1174.725
Random sentences 1114.8894
Random words 18572.4679

Table 6: Perplexity scores of the sequence-to-sequence model in Figure 11b and
the HRED model in Figure 14b, both using GloVe embeddings

The HRED model follows a similar trend to the perplexity scores of the
sequence-to-sequence model, as shown in Table 6. However, even with the
HRED model being trained for twice as long, this comparison is significant.
While it is not a definitive comparison, as different test sets were used for each
model, the values differ drastically. This is not anecdotal evidence that the
HRED model performed better on testing data than the sequence-to-sequence
model, but it is worth noting. These lower values potentially indicated that the
HRED model has begun being able to recognize sentences, and is able to better
handle data it has not seen yet. Even though random sentences still performed
better than actual sentences in the HRED model, the difference compared to
the sequence-to-sequence model is dramatic. Whereas before, the value for ac-
tual sentences was increased by a factor of two, now there was only about a
5% increase. The model, however, is still not able to accurately use the context
from the previous four sentences to more accurately predict the correct target
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sentence versus any sentence at random.

Drawbacks

The project currently has several drawbacks. For one, due to training on such
a small corpus, the models also have struggle training and not overfitting on
the data. The dataset used for the sequence-to-sequence model contained over
5,000 pairs, while the HRED model’s dataset had just 166 paragraphs. Due to
this, both models did not have an ideal training loss value or significantly low
perplexity scores. The models also incorrectly load checkpoints, and it was not
determined if this was user-error or an error with PyTorch itself. Finally, the
final sentences predicted by the model are in many cases still incoherent and
not ideal to generate a story yet. This problem could still be attributed to the
lack of data, or potentially for not training for enough epochs.

Future work

Beyond correcting the drawbacks listed above, future work could include train-
ing and testing a working model on a larger corpus of stories, such as an en-
tire author’s work, thousands of novels of a similar genre, poems, etc. The
HRED model in this project was only trained and evaluating using paragraphs
of length five. In the future, varying sized paragraphs could be trained with.
Another change for this model would be varying the scope of the context. In
this project the scope was kept to paragraphs, but this could be increased to a
larger scope such as chapters or acts. Training more custom embeddings could
also prove beneficial, either training them for much longer than the experiments
done for this project, or using GloVe to train custom word embeddings rather
than word2vec.

Conclusion

Telling stories is an important aspect of how humans communicate with one
another. Since machines and AI are becoming more and more integrated in our
society, it has become increasingly important for them to not only understand
these stories, but also generate them. Recurrent neural nets are a method cur-
rently being explored on how to train models to generate these stories, and was
the focus of this project. Both sequence-to-sequence and hierarchical recurrent
encoder-decoder models were trained in this project to compare their effective-
ness with one another, and their overall effectiveness at the end-goal of gener-
ating stories themselves. The first Harry Potter novel was used as their corpus
in an attempt for the models to be able to generate sentences within a similar
manner to the ones found within this book. A large portion of the project,
however, became a study of various word embeddings, and how they affect the
training of the models. The results show that even with such a small corpus,
these two implemented models are able to train and learn sentence structure
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based on the training data. The implementation of pre-trained word embed-
dings also positively affect the metrics of how to evaluate these models, and
increased their performance. Finally, the inclusion of a context encoder within
the HRED model shows the significance of a paragraph’s context along its in-
dividual sentences, greatly decreasing the perplexity of the model when given
testing data in comparison to the sequence-to-sequence network only training
on sentence pairs.

Before undertaking this project I had a brief knowledge of neural networks,
but had never been exposed to these different architectures. I have learned
a great amount on how these techniques work, and how their equations are
translated into code implementation. This project was also exclusively writ-
ten in Python, a language I did not have much practical experience with be-
forehand. After implementing these models and writing code for various text
pre-processing techniques, I believe my knowledge of the language and many
different third-party libraries to have been greatly increased. I am grateful for
the opportunity to work on this project, and believe that many of the things I
have learned on it can be applied to my future work in the field.
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